半岛BOB浅析嵌入式人工智能技术未来发展当前,人工智能的计算大多数是在数据中心运行,即运行在“云”上。但是随着技术的发展,人们发现一个巨大的机会正在远离数据中心的互联网边缘产生——嵌入式人工智能正受到越来越广泛的重视。
物联网拥有海量的终端设备,未来如果这些网络节点所抓取的数据都需要上传云端进行智能处理或者深度学习,对网络带宽将提出巨大挑战。“另一个挑战就是功耗。设备端大量采用电池供电,比如智能移动设备、新能源汽车等都对设备功耗提出越来越高的要求。”(中国)有限公司市场策略中心综合营销部副部长王均峰表示。因此,以边缘计算为特点的嵌入式人工智能技术开始受到重视。
对此,中科创达技术总监王璠表示,和云计算一样,边缘计算的作用也是优化资源、提升效率。举个例子,一些嵌入式的小型设备基础信息采集处理是在端完成的,即数据传送到网关后,就进行数据过滤和处理,没必要每条原始数据都传送到云端,这省去了大量的成本。云端计算的AI致力于更好地解决问题,而嵌入式的AI则致力于更加经济地解决问题。
今年3月,ARM发布面向人工智能应用的DynamIQ技术。在近日举办的技术论坛上,ARM再次展示基于DynamIQ技术的全新处理器,Cortex-A75处理器、Cortex-A55处理器和Mali-G72图形处理器。ARM副总裁暨计算产品事业部总经理Nandan Nayampally表示:“我们需要赋予从网络节点到云端的计算具有更快速、更高效和更安全的分布式智能。”采用DynamIQ技术的Cortex-A系列处理器在优化应用后,可实现比基于Cortex-A73的设备高50倍的人工智能性能,并最多可提升10倍CPU与SoC上指定硬件加速器之间的响应速度。
在日前举行的GMIC(全球移动互联网大会)上,美国高通公司中国区董事长孟樸也重点提出了人工智能话题。他表示:“未来机器学习会在云端和终端协调发展。我们不认为所有的人工智能,都是在云里面实现,因为个人隐私的问题、信息安全问题,还有传输上的时延问题等。高通旗舰处理器骁龙835拥有高性能的图形处理能力,还有数字信号处理器DSP,加上软件算法,将使终端实现机器学习能力。相信今后人工智能、机器学习,在终端的发展会和在云端的发展一样,同步加速进行。”
针对边缘运算日益增加的需求,NVIDIA推出新款开发板Jetson TX2,将整套人工智能系统缩小在一块电路板之上,这让Jetson TX2可在终端设备上更好地运行深度学习功能等,进而开发出更高的智能化装置。相较前一代产品Jetson TX1,Jetson TX2的效能提升了两倍,耗电量则不到7.5瓦,能源效率提升了两倍多。
资料显示,赛灵思推出的reVISION堆栈技术,具备了可重组和所有形式链接的特性,让开发者能充分运用堆栈技术,快速研发与部署升级方案,对开发未来需求的智能视觉系统至关重要。不仅如此,该技术使开发者在结合机器学习、计算机视觉、传感器融合与连接的应用时,能够获得显著优势。举例而言,相较于其他嵌入式GPU与传统SoC,reVISION将机器学习推论的每秒每瓦影像效能提升了6倍,计算机视觉每秒每瓦每帧处理速度提升了42倍,而延迟却只有1/5。
嵌入式人工智能将在边缘计算产品中,得到十分广泛的应用。目前,嵌入式AI已经开始进入市场,特别是在自动驾驶与数据安全领域得到快速的渗透与应用。
“辅助驾驶系统如果在云端计算,设备端采集到数据后上传,计算完成后再返回终端,这样会不可避免地带来一定延时,而在驾驶场景中,这种延时意味着危险系数的提高。”瑞萨电子(中国)有限公司应用技术中心汽车电子部副部长赵坤表示。同时,数据安全也是关注的一个要点,上传到云端的计算意味着隐私被泄露的风险提升。
所以,嵌入式人工智能将在边缘计算产品中,得到十分广泛的应用半岛BOB。根据刚发布的《边缘计算产业联盟》,边缘计算有三个发展阶段。
一是联接。实现终端及设备的海量、异构与实时连接,网络自动部署与运维,并保证联接的安全、可靠与维护性。远程自动抄表就是其中的应用场景,解决了电表数量巨大的问题。
二是智能。边缘侧引入数据分析与业务自动处理能力,智能化执行本地业务逻辑,可以大幅度提升效率并且降低成本。电梯的预测性维护就是该应用之一。
三是自治。引入人工智能,边缘计算不但可以自主进行业务逻辑分析与计算,还可以动态实时完成自我优化、调整执行策略。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场半岛BOB。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。举报投诉
是在1956年夏季,以麦卡赛、明斯基、罗切斯特和申农等为首的一批有远见卓识的年轻科学家在一起聚会,共同研究和探讨用机器模拟
教育要更加重视学生个性化和多样性。爱因斯坦说过“每个人都是天才,如果以爬树的本领判定一条鱼的能力,那这条鱼终身都会认为自己是一个
(AI)以及利用神经网络的深度学习是实现高级驾驶辅助系统(ADAS)和更高程度车辆自主性的强大
的改变绝对不仅仅是一个科技的改变,它对所有的行业都会重新定义与颠覆。”身处这样一个时代,我们该如何看待这场即将到来的风暴呢?
击败,改造起来反而更加容易。一是这些企业拥有行业海量的数据,充沛的资金;二是在生产力水平急需提升、人口红利逐渐消失的情况下,这些传统企业也有迫切的意愿来改造升级自己的工厂、业务
芯片也向来备受关注。近几年,谷歌、苹果、微软、Facebook、英特尔、高通、英伟达、AMD、阿里巴...
所束缚,只能在很小范围进行实验、运用,但是随着5G时代的渐渐临近,我们再一次听到了它的声音,而这一次,它开始脚踏实地地走入市场,走入
的车辆的文章。但是,您如何将在服务器群上开发的神经网络 (NN) 压缩到量产汽车中资源受限的
开发套件(EAIDK)AIoTOPEN AI LAB最开始听到这个名字,以为是一家国外的公司或者是一个开源社区,登录官网之后发现是国内
、NB-IoT,通过物联网案例逐渐进阶学习主要课程①STM32开发课程;②5G窄带物联网开发职业规划物联网开发工程师第六阶段:
显着增加。它们在工业环境中激增的原因是,今天的设备配备了具有长期可用性的高性能工业级处理器。现代
来为产品质量把关也成为一个必然趋势。近日,日本IT大厂 NEC 推出了一个“视觉检测(AI Visual
领域,也是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,数学、心理学,甚至哲学。
,它的实际应用百度大脑、语音搜索、图像、广告跟搜索排序及自动驾驶,用一句简单的话来概括就是在云端基于大数据、大计算做
开发优缺点四、与互联网(CS相关的,如平台服务器,前端/APP/软件)对比五、能力要求和薪资
的支持,DACOM成功地将AI科技与无线蓝牙耳机相互结合,研发出一款可以全语音交互对话及出行导航线路规划等一站
,我们可以将其应用到效能评估系统中,进一步提高效能评估的准确性和实用性。 华盛恒辉可以利用
,通过对大量数据的分析,来识别和评估各个业务环节的表现,从而对效能进行评估和监测。此外,我们还可
持续获得突破性进展,呈现出深度学习、跨界融合、人机协同、群智开放、自主操控等以应用为导向的新特征。加强新一代
程序。他们需要编程才能发挥作用。事实上,他们似乎不可避免地会从简单的 AI 程序开始,随着他们的理解和学习能力的
贸泽电子公司将在2021年度Empowering Innovation Together系列节目的下一集中探讨边缘
电子系统也在不断演进之中。两者的结合催生了边缘计算的概念半岛BOB。随着物联网开发人员不断应对新兴的物联网需求
信息获取(简称爬虫) 与数据分析1、发起请求3、解析内容4、保存数据二、Requests库介绍2.1基本介绍
Copyright © 2012-2025 半岛BOB·「中国」官方网站 版权所有HTML地图 XML地图 鲁ICP备18053584号-2
收到你的留言,我们将第一时间与你取得联系